An immersed interface method for Stokes flows with fixed/moving interfaces and rigid boundaries

نویسندگان

  • Zhijun Tan
  • Kian Meng Lim
  • Boo Cheong Khoo
چکیده

Keywords: Incompressible Stokes equations Singular force Immersed interface method CG-Uzawa method Deformable interface Front tracking Irregular domains Rigid boundaries a b s t r a c t We present an immersed interface method for solving the incompressible steady Stokes equations involving fixed/moving interfaces and rigid boundaries (irregular domains). The fixed/moving interfaces and rigid boundaries are represented by a number of Lagrang-ian control points. In order to enforce the prescribed velocity at the rigid boundaries, singular forces are applied on the fluid at these boundaries. The strength of singular forces at the rigid boundary is determined by solving a small system of equations. For the deform-able interfaces, the forces that the interface exerts on the fluid are calculated from the configuration (position) of the deformed interface. The jumps in the pressure and the jumps in the derivatives of both pressure and velocity are related to the forces at the fixed/moving interfaces and rigid boundaries. These forces are interpolated using cubic splines and applied to the fluid through the jump conditions. The positions of the deformable interfaces are updated implicitly using a quasi-Newton method (BFGS) within each time step. In the proposed method, the Stokes equations are discretized via the finite difference method on a staggered Cartesian grid with the incorporation of jump contributions and solved by the conjugate gradient Uzawa-type method. Numerical results demonstrate the accuracy and ability of the proposed method to simulate incompressible Stokes flows with fixed/moving interfaces on irregular domains. The low Reynolds number flow with interfaces in complex geometries is of interest in many engineering and physiological applications, for example, multi-phase flows in various fluid components within fuel cell, biological cell trapping and manipulation in microfluidic device, and droplet motion in confined geometries. Flow problems involving deformable interfaces and complex geometries often pose numerical difficulties and challenges in computational fluid dynamics. One of the difficulties and challenges in these problems is that the fluid motion, the motion of the deformable interface and the interaction with the rigid boundaries must be computed simultaneously. This is necessary in order to account for the complex interaction between the fluid, the interfaces and the rigid boundaries. The other difficulty is the accuracy of the fluid domain computation, and this can be improved partially by implementing moving mesh techniques as in [10,47]. Fig. 1 shows an illustration of such flow problems involving the rigid boundary and fixed/deformable interface embedded in a uniform …

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiphase Dynamics in Arbitrary Geometries on Fixed Cartesian Grids

In this work, a mixed Eulerian–Lagrangian algorithm, called ELAFINT (Eulerian Lagrangian algorithm for interface tracking) is developed further and applied to compute flows with solid–fluid and fluid–fluid interfaces. The method is capable of handling fluid flows in the presence of both irregularly shaped solid boundaries and moving boundaries on a fixed Cartesian grid. The field equations are ...

متن کامل

A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries

A sharp interface immersed boundary method for simulating incompressible viscous flow past three-dimensional immersed bodies is described. The method employs a multi-dimensional ghost-cell methodology to satisfy the boundary conditions on the immersed boundary and the method is designed to handle highly complex three-dimensional, stationary, moving and/or deforming bodies. The complex immersed ...

متن کامل

An immersed interface method for simulating the interaction of a fluid with moving boundaries

In the immersed interface method, boundaries are represented as singular force in the Navier–Stokes equations, which enters a numerical scheme as jump conditions. Recently, we systematically derived all the necessary spatial and temporal jump conditions for simulating incompressible viscous flows subject to moving boundaries in 3D with second-order spatial and temporal accuracy near the boundar...

متن کامل

An immersed interface method for viscous incompressible flows involving rigid and flexible boundaries

We present an immersed interface method for the incompressible Navier-Stokes equations capable of handling rigid immersed boundaries. The immersed boundary is represented by a set of Lagrangian control points. In order to guarantee that the no-slip condition on the boundary is satisfied, singular forces are applied on the fluid. The forces are related to the jumps in pressure and the jumps in t...

متن کامل

A Fast Immersed Boundary Fourier Pseudo-spectral Method for Simulation of the Incompressible Flows

Abstract   The present paper is devoted to implementation of the immersed boundary technique into the Fourier pseudo-spectral solution of the vorticity-velocity formulation of the two-dimensional incompressible Navier-Stokes equations. The immersed boundary conditions are implemented via direct modification of the convection and diffusion terms, and therefore, in contrast to some other similar ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 228  شماره 

صفحات  -

تاریخ انتشار 2009